Sticking a fork in cohesin--it's not done yet!

نویسنده

  • Robert V Skibbens
چکیده

To identify the products of chromosome replication (termed sister chromatids) from S-phase through M-phase of the cell cycle, each sister pair becomes tethered together by specialized protein complexes termed cohesins. To participate in sister tethering reactions, chromatin-bound cohesins become modified by establishment factors that function during S-phase and bind to DNA replication-fork components. Early models posited that establishment factors might move with replication forks, but that fork progression takes place independently of cohesion pathways. Recent studies now suggest that progression of the replication fork and/or S-phase are slowed in cohesion-deficient cells. These findings have led to speculations that cohesin ring-like structures normally hinder fork progression but coordinate origin firing during replication. Neither model, however, fully explains the diverse effects of cohesion mutation on replication kinetics. I discuss these challenges and then offer alternative views that include cohesin-independent mechanisms for replication-fork destabilization and transcription-based effects on S-phase progression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Budding Yeast Wapl Controls Sister Chromatid Cohesion Maintenance and Chromosome Condensation

The establishment of stable sister chromatid cohesion during DNA replication requires acetylation of the chromosomal cohesin complex by the replication fork-associated acetyltransferase Eco1. Cohesin acetylation is thought to facilitate replication fork progression by counteracting an as yet ill-defined cohesion "antiestablishment" activity imposed by the Wapl protein. Here, using budding yeast...

متن کامل

Establishment of Cohesion at the Pericentromere by the Ctf19 Kinetochore Subcomplex and the Replication Fork-Associated Factor, Csm3

The cohesin complex holds sister chromatids together from the time of their duplication in S phase until their separation during mitosis. Although cohesin is found along the length of chromosomes, it is most abundant at the centromere and surrounding region, the pericentromere. We show here that the budding yeast Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3, are...

متن کامل

Synthetic Lethality of Cohesins with PARPs and Replication Fork Mediators

Synthetic lethality has been proposed as a way to leverage the genetic differences found in tumor cells to affect their selective killing. Cohesins, which tether sister chromatids together until anaphase onset, are mutated in a variety of tumor types. The elucidation of synthetic lethal interactions with cohesin mutants therefore identifies potential therapeutic targets. We used a cross-species...

متن کامل

Fork it over: the cohesion establishment factor Ctf7p and DNA replication.

To produce viable progeny, cells must identify the products of chromosome replication as sister chromatids, pair them together and then maintain this cohesion until chromosome segregation. It is well established that cohesin ring-like structures maintain sister chromatid cohesion, but the molecular mechanism by which only sisters become paired (termed establishment) is highly controversial. One...

متن کامل

Ctf4 Links DNA Replication with Sister Chromatid Cohesion Establishment by Recruiting the Chl1 Helicase to the Replisome

DNA replication during S phase is accompanied by establishment of sister chromatid cohesion to ensure faithful chromosome segregation. The Eco1 acetyltransferase, helped by factors including Ctf4 and Chl1, concomitantly acetylates the chromosomal cohesin complex to stabilize its cohesive links. Here we show that Ctf4 recruits the Chl1 helicase to the replisome via a conserved interaction motif ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Trends in genetics : TIG

دوره 27 12  شماره 

صفحات  -

تاریخ انتشار 2011